Christoffel Words and the Calkin-Wilf Tree

نویسندگان

  • Alessandro De Luca
  • Christophe Reutenauer
چکیده

In this note we present some results on the Calkin-Wilf tree of irreducible fractions, giving an insight on the duality relating it to the Stern-Brocot tree, and proving noncommutative versions of known results relating labels of the CalkinWilf trees to hyperbinary expansions of positive integers. The main tool is the Christoffel tree introduced in a paper by Berstel and de Luca.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sturmian words and the Stern sequence

Central, standard, and Christoffel words are three strongly interrelated classes of binary finite words which represent a finite counterpart of characteristic Sturmian words. A natural arithmetization of the theory is obtained by representing central and Christoffel words by irreducible fractions labeling respectively two binary trees, the Raney (or Calkin-Wilf) tree and the Stern-Brocot tree. ...

متن کامل

STATISTICAL PROPERTIES OF THE CALKIN–WILF TREE: REAL AN p−ADIC DISTRIBUTION

We examine statistical properties of the Calkin–Wilf tree and give number-theoretical applications. 1. A mean-value related to the Calkin–Wilf tree The Calkin–Wilf tree is generated by the iteration a b 7→ a a + b , a+ b b , starting from the root 1 1 ; the number a a+b is called the left child of a b and a+b b the right child; we also say that a b is the mother of its children. Recently, Calki...

متن کامل

The q-Calkin-Wilf tree

We define a q-analogue of the Calkin–Wilf tree and the Calkin–Wilf sequence. We show that the nth term f (n; q) of the q-analogue of the Calkin–Wilf sequence is the generating function for the number of hyperbinary expansions of n according to the number of powers that are used exactly twice. We also present formulae for branches within the q-analogue of the Calkin–Wilf tree and predecessors an...

متن کامل

Linking the Calkin-Wilf and Stern-Brocot trees

Links between the Calkin-Wilif tree and the Stern-Brocot tree are discussed answering the questions: What is the jth vertex in the nth level of the Calkin-Wilf tree? A simple mechanism is described for converting the jth vertex in the nth level of the Calkin-Wilf tree into the jth entry in the nth level of the Stern-Brocot tree. We also provide a simple method for evaluating terms in the hyperb...

متن کامل

An arborist’s guide to the rationals

There are two well-known ways to enumerate the positive rational numbers in an infinite binary tree: the Farey/Stern-Brocot tree and the Calkin-Wilf tree. In this brief note, we describe these two trees as ‘transpose shadows’ of a tree of matrices (a result due to Backhouse and Ferreira) via a new proof using yet another famous tree of rationals: the topograph of Conway and Fung.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011